
N88- 1 7 2 4 8
Trimodal InterDretation of Constraints for Planning

by
David Krleger and Rlchard Brown

MITRE Corporation, Bedford, MA 01730

1. ABSTRACT

Constraints are used in the CAMPS1 knowledge-based planning
system to represent those propositions that must be true for a plan to
be acceptable. One mode of interpreting a constraint determines its
logical value. A second mode inverts a constraint to restrict the
values of some set of planning variables. CAMPS introduces a third
mode: the "make" mode. Given an unsatisfied constraint, make eval-
uation mode suggests planning actions which, if taken, would result
in a modified plan in which the constraint in question may be
satisfied.

These suggested planning actions -- termed delta-tuples -- are
the raw material of intelligent plan repair. They are used both in
"debugging" an almost right plan and in replanning due to changing
situations. Given a defective plan in which some set of constraints
are violated, a problem-solving strategy selects one or more con-
straints as a focus of attention. These selected constraints are eval-
uated in the make mode to produce delta-tuples. The problem-
solving strategy then reviews the delta-tuples according to its appli-
cation and problem-specific criteria to find the most acceptable
change in terms of success likelihood and plan disruption. Finally,
the problem-solving strategy makes the suggested alteration to the
plan and then rechecks constraints to find any unexpected con-
sequences.

2. Backaround

Modern planning systems usually distinguish the "what is"
knowledge that captures the salient features and constraints of a
plannings application from the strategic reasoning that effectively
applies such knowledge to accomplish some goal.[Davis80]
[Wilensky80] [StefikBl a]. The latter, typically termed meta-rules or
meta-knowledge, provides an explicit and extensible representation
of the control strategies required for intelligent planning. The CAMPS
Metaplanning [Brown851 component provides a mechanism for
posting goals to the system and utilizing a mix of declarative meta-
plans and procedural standard control flows to accomplish these
goals. In so doing, new subgoals are posted and new metaplans are
instantiated to accomplish these subgoals. The resulting hierarchy of
active problem-solving agents provides global control over local
planning actions (e.g., filling in a slot or checking a constraint).

The problem-solving agents provide CAMPS with a high-level,
top-down view of planning and resource allocation. However, prob-
lems with planning usually arise because some detail is out of place.
This defect in a plan is signaled to the metaplanning component via

1 This reporls on work conducted by the MITRE-Bedford Artifiaal Intelligence
Center under project 84008, sponsored by N A W S C . Additional sponsorship
for the implementation of the CAMPS architecture was provided by the Rome Air
Development Center, COES.

a constraint violation. The third of CAMPS three modes of constraint
evaluation, makemode, is intended to provide a low-level, bottom-
up view of the planning problem by producing a structure called a
delta-tuple that suggests some action the problem-solver might take
to resolve the problem and eliminate the constraint violation.

Make-mode evaluation is not guaranteed or even intended to
provide an exhaustive list of all possible corrective actions available
to the planning system. The metaplanning component itself can use
high-level strategies for resolving multiple constraint violations in a
global manner. Rather, make-mode evaluations is an attempt to
extend the role of the CAMPS primitive operators (CAMPS
predicates), and through the delta-tuples, involve them in the plan
repair process. This does not absolve the metaplanning component
from it6 primary responsibilities, Le., preventing destructive subgoal
interactioWannihilation and limiting the combinatorics of the search
through the space of possible plans.

The ability to respond to unforeseen conditions in the environ-
ment (replan) is a major design goal of CAMPS. In order to achieve
replanning capability, problem-solving strategies and predicates
must communicate in an orderly manner. Delta-tuples typically sug-
gest ways of undoing some planning decision which, due to the
limitations of CAMPS look-ahead mechanism or, more importantly,
due to some unforeseeable change in the planning environment, that
has made a suggested plan unacceptable.

2.1 CAMPS'S AD~iication-SDecIfic Knowledge

CAMPS organizes its domain knowledge around an AKO
hierarchy of plan elements. Plan element instances represent
specific tasks, resources, and other objects within a CAMPS
application domain. Using the nomenclature of "frames," a plan
element instance has associated with it a number of slots, some of
which may contain instances of, or sets of instances of, other plan
elements. In this way, the plan element hierarchy also represents
some of the relationships that can exist between objects.

3. Defining Constraints

CAMPS views mission planning primarily as a constraint satis-
faction problem [Stefiksl bj [Fox831. Constraints describe relation-
ships that must hold among the slots of plan elements. In its simplest
form, a constraint simply says that some relalionship should ahays
be enforced ,i.e. there are no limiting conditions under which the
constraint does not apply. This relationship is expressed as a
predicate applied to constants and variables. Following a LISP-like
syntax, a relationship may look like:

(PREDICATE-SYMBOL ARGl ARG2 ... 1 .

307

Figure 1. The CAMPS
architecture uses several types
of declarative knowledge to
support planning applications in
different domains. Information
about partially completed plans
is kept in a relational database.
When operating, information is
read into working memory.
Choices for filling slots in plan
elements (made by the user or
automaticallly in the user's
behalf) are subjected to
constraint checking. Finally,
work is saved back into the
database.

Library

\

C O N m T N T S ARE Figure 2. Planning -- solving a
ASSOCIATED WITH constraint satisfaction problem --
PLAN ELEMENTS IN centers on filling slots in plan elements

subject to constraints. Types
("capabilities of") plan elements are
arranoed into a soecialization (AKO)

THE HIERARCHY.

?&s$ INHERITS ALL CONSEUINTS FROM
h->s -, ALL COMPONENT PLAN ELEMENTS.

WHEN A PLAN ELEMENT IS
INSTANTIATED CONflRAINT
INSTANCES AI& CREATED FOR
EACH CONSTRAINT.

-
hierarchy along which slots (but not
slot values) and constraints are
inherited.

308 CIRIGINAL PAGE IS
OF POOR Quam

For example, a constraint that enforces the condition that the
start of a task must be no earlier than the tasks earliest-start (as
determined by some problem-sotving strategy) might be of the form:

The variables, syntactically flagged by a leading "?", are usually
associated with slots of a plan element, so that ?EARLIEST-START
is a variable associated with the :EARLIEST-START slot of the plan
element instance whose class includes the essential-event
capability.

(*GREATER* ?START ?EARLIEST-START)

Constraints are central to the topic of this paper. We will show
how the various modes of constraint interpretation interact during
plan construction and repair. Each constraint declaration creates a
data structure with the following attributes:

Plan Element. The plan element that is the focus of the con-

Involved Slots The slots for which the relationship is enforced.
Condltlons This is a list of predicates, some of which may be

negated. The constraint is applicable only if the
conditions are satisfied.

Relationshlp (Predlcate) A constraint defines a relationship
between slots of a plan element. This relationship is ex-
pressed as single, possibly negated predicate that
defines the constraint.

straint.

Ideally, a plan should not have any violated constraints.
However, it is naive to believe that planning problems have solutions
in which all constraints are satisfied. The CAMPS architecture uses a
numeric measures of that reflects the degree of belief in a constraint
being violated.

In addition to degree of belief, CAMPS also associates a con-
sequence Category with every constraint. The consequence cate-
gory provides a qualitative measure of the seriousness of the con-
straint's violation. The consequence category helps to order the con-
straints for evaluation and provides a metric by which problem-
solving strategies can selectively check and relax constraints.
Consequence categories include feasibility, survivability, success,
efficiency and assumption.

4. Variables in CAMPS

CAMPS variables occur as arguments in predicate expressions.
Generally speaking, a CAMPS variable is unrelated to a LISP
variable. A variable typically, but not always, corresponds to a slot in
Some plan fAement. Conversely, at an implementation level, each
slot can be mapped to a CAMPS variable, which in turn holds what
we heretofore have informally spoken of as "the slot's value."

The status of a variable reflects the nature of the its value. If
the value of a variable is unknown its status is :UNATTACHED. If it is
bound to a single value its status is :FIXED. If there is a problem-
solving strategy that claims to be able to suggest values for the
variable, the variable's status is :CANDIDATES. The strategy in this
situation is termed "a generator."

Conceptually, a generator is a list of candidates. They are im-
plemented as streams that return candidates from a set of
possibilities. Number generators, for instance, provide a stream of all
numbers between plus and minus infinity. Such a generator could
receive a restriction messages that would restrict candidates to
positive integers. Another :RESTRICT message sent to that
generator could further restrict candidates to numbers less than
seven.

CAMPS also supports generators that deal with objects other
than numbers. An entire class of generators deals with plan
elements. :RESTRICT messages sent to an instance of this class of
generators could be based on plan element capabilities.

The primary purpose of CAMPS variables is to facilitate unifiia-
tion. Unification is the process whereby two patterns consisting of
constants and variables are matched in such a way as to bind
variables in one pattern to variables in the other. Unifying two
variables not only forces them to have the same value but ensures
that anything that affects one will also identically affect the other.

5. MODES of Constraint Evaluation

5.1 Normal mode evaluatlcn

Predicates evaluated in normal mode are treated much the
same as predicates in formal logic. One important distinction is that a
CAMPS predicate can indicate that insufficient information is avail-
able: CAMPS predicates can return 'TRUE, 'FALSE (or NIL if there
is not enough information to determine the predicate's logical value).
Predicates in CAMPS also return two additional values: a degree of
belief that the predicate is true and a degree of belief that the
predicate is false. This last value is also known as the degree of
dlsbellef. The second and third values returned support the
Dempster-Schafer model of reasoning with uncertainty.

The logical value returned by the predicate is a function of the
beliefdisbelief values. If belief exceeds disbelief by a certain
threshold, the predicate's logical value is 'TRUE. If disbelief exceeds
belief by that threshold, the predicate's logical value is 'FALSE. If the
difference between belief and disbelief does not exceed some mini-
mum value, the predicate returns NIL meaning that the evaluation
could not determine the truth or falsehood of the propositionl.

A constraint that enforces a relationship between two slots of a
plan element is either Satisfied or vlolated depending on the logical
value returned by its predicate. Formally, the predicate being 'TRUE
indicates that the constraint is VIOLATED, so that a slot is
"acceptable" if the logical disjunction of it's constraints is *FALSE.

5.2 Blas mode evaluatlon

Following a general strategy of "delayed commitment"
[Sacerdoti77j, CAMPS has the ability to "look ahead" before fixing
the value of a slot. In bias-mode, predicates are evaluated for their
side effects on the generators associated with the CAMPS variables
sewing as arguments to the predicate. These side effects usually
take the form of restricting an unattached variable to a set of accept-
able candidates by attaching a generator to the variable, further re-
stricting the set of a variable's candidates by sending its attached
generator an appropriate :RESTRICT message, or (when we're
lucky) fixing a variable's value to a single candidate.

As planning proceeds, constraints are evaluated in bias-mode.
producing sets of candidates for each variable associated with a slot
of a plan element. A slot will typically have several constraints
associated with it, all of which are trying to be satisfied. One con-
straint will restrict a variable's value to a certain set of candidates: a
second constraint might further restrict that set of candidates to a
subset of the first and so on until a set of acceptable values is
produced and/or some constraints post violations.

This approach postpones fixing the value of a slot until as much
information as possible has been considered, guiding the constraint
satisfaction process towards a successful conclusion without need-
less search through the space of (im)possible plans.

CAMPS provides two unification contexts. In bias-true,
unification "attempts" to return a 'TRUE result by binding the
predicate variables appropriately; in bias-false, unification attempts

1 Note that this scheme can distinguish between absence of information and
contrrdlctory Infonnrllon. A MieVdisbelief pair (0.5 0.5) indcates a bt of con-
traddocy information, while (0.0 0.0) indicates a complete absence of informa-
tion. Since we will use the same scheme to describe 'confidence' in a suggested
m c t i v e action, this allows us to distinguish between a suggestion with little to
recommend it (0.2 0.0). and a good suggestion with a lot of risk (0.6 0.4).

309

to impose restrictions on the variable that produce a 'FALSE result
The overall effect of bias mode evaluation is to avoid search by
initially trying to restrict variables to values that have a good chance
of simultaneously satisfying interacting constraints.

5.3 Make mode evaluatlon

A Violated constraint is often serious enough that a problem-
solving strategy will choose to try to fix it. The basic idea behind be-
hind make-mode evaluation is that the predicate associated with the
violated constraint has useful information about how to fix itself.
When an unsatisfied constraint is evaluated in a make-mode, a list of
detfa-fuples is returned. These delta-tuples suggest ways in which
the violated constraint might be satisfied. They embody the local
knowledge about the constraint, or more specifically, its associated
predicate and conditions. It is the task of some higher !we1 problem-
solving strategy to evaluate these suggestions in t e r n of the overall
planning goal and eventually choose one or more to execute.

8. Usina Make- Mode Evaluation

The three modes of constraint evaluation -- normal, blas, and
make are dosely connected. Normal sees if the plan is in trouble;
blas tries to keep the plan out of trouble; while make-mode suggests
ways to keep the p h i out of trouble it is already in.

6.1 Cruclal Ideas

The key elements of CAMPS'S solution to a planning problem,
evidenced by having one or more constraint violations, depends on
answering the following questions:

What change can be made to a plan that will fix the problem?
If the change is made, what is the belief that the problem will be

corrected?
What is the expectation that the proposed change will !rigger a

ripple effect? That is, will fixing this problem in the -re-
s c n i manner introduce a dispropofiionate number of
new and perhaps more difficult problems?

What problem-solving strategy is responsible for making the
change?

Both local and global reasoning is required to address these issues
duringplan refinement and replanning. The metaplanning
component of CAMPS provides the global perspective. Make-mode
evaluation of constraints and the delta-tuples returned, provides the
local perspective. In particular the bellef that the proposed change
will correct the difficulty combined with the dlsbelief derived from the
ripPe likelihood provide a reasonable selection criteria upon which a
more global criteria can be based. CAMPS uses both of these per-
spectives in a combined topdown bottom-up approach to generate
acceptable plans.

6.2 Delta TuPleg

Specifically, a delta-tuple describes a possible way to modify a
plan element in order to satisfy a violated constraint. As such, it must
embody the essential features of some planning action such as
rescheduling a task, using a different number of resources or using a
different resource altogether. Implementationally, these planning
actions typically distill down to changing the value of some slot of
some plan element instance. Thus, delta tuples carry the following
information:

Plan Element. The plan element to be modified by the delta-
tuple.

Slots. A list of the slots expected to change if the action sug-
gested by this delta tuple is taken. This list gives the re-
sponsible problem-solving agent a basis for selecting
among alternative delta tuples. A reasonable selection
criteria might try to localbe the effects of carrying out a
suggested action by minimizing the number of slots
changed. Another might try to avoid changing slots that
the user specifically set or prefers to not change.

Success Predicate. The predicate expression that will evaluate
'TRUE if the suggested planning action is taken. This
may or may not be the predicate of the constraint whose
violation is being repaired.

Reclplent. In all cases, the suggested action will take the form of
a message to be sent to some message-receiving
object. This recipient could be the plan element itself, the
generator associated with a changing variable, or a re-
sponsible problem-solving strategy.

change.

elements.

measures which give the a prioribelief that the change
proposed by the delta-tuple will satisfy the predicate or
constraint.

Message. The actual message sent to the recipient to effect the

Arguments. The appropriate message arguments, typically plan

Confldence Pair. A Dempster-Schafer pair of confidence

6.3 Generatina DeltaTuDles

The information needed to generate delta-tuples resides with
the predicates. Each predicate has a set of general operations for
changing the value of one or more of its arguments such that the
predicate will be satisfied. For example, CAMPS has a predicate that
enforces the relationship that A R G ~ must be greater than A R G ~ .

(*GREATER* ARGl ARG2)

Associated with the predicate are two make-true operations,
:MAKEGREATER and :MAKE-LESS. If a violated constraint involving
this predicate is evaluated in make-true mode, CAMPS will attempt
to create a delta-tuple by applying the :MAKE-GREATER operation to
A R G ~ and another delta-tuple by applying the MAKE-LESS
operation to A R G ~ .

In order for these operations to have any meaning in terms of
the plan being generated, CAMPS must first trace the source of each
variable serving as a predicate's argument. In the simplest case, the
variable corresponds directly to a slot of a plan element. In that case,
the delta-tuple would specify a message to be sent to a plan element
to restrict the value of that slot variable's generator to the newly
computed set of acceptable values.

In summary, make-mode evaluation is built on the following
approach:

Each predicate has associated with it a set of general operations
that if applied to its arguments would satisfy the
predicate.

Each variable bound to a predicate argument is examined to
determine if and how these operations could be properly
applied to the variable.

These operations are then applied to the variable, yielding a new
suggested value or range of values for the variable that
promises to satisfy the predicate. It is at this point that a
delta-tuple is created.

7. ExamDle

Make-mode constraint evaluation enables CAMPS to intelli-
gently resolve the resource conflicts that present an especially diffi-
cult problem. Most planning systems deal with many types of re-
sources and many tasks competing for those resources. The conse-
quence of modifying a resource allocation to satisfy one task will
likely effect the viability of some other task. Our example is from the

310

NASA cargo loading application. Integration of experiments into
racks for one mission will typically overlap with the rack-experiment
deintegration of previous missions. This situation is further exacer-
bated by schedule changes and mission payload reassignments that
force replanning and rescheduling.

CAMPS represents sets of homogeneous resources as
resource-pools. in the NASA application, each rack used for holding
a Space-Lab experiment is distinguishable, and is represented as a
RACK unit quantity resource-pool so that racks are tracked
individually (e.g., by serial number). A separate plan element
including the RESOURCE-UTILIZATION capabiliiy records a single
resource requirement being met from a single pool; it includes the
following slots:

:CONSUMER the task requesting the resource

:SUPPLIER the resource-pool supplying the resource
:BEGIN the time that the resource is first need, directed to the

:END the time the resource is returned to the pool, directoci to the

:RETURNING-TASKthe task returning the resource.

:START Slot Of the :CONSUMER.

:FINISH Slot Of the :RETURNINGTASK.
TEARLIEST-BEGIN iS the :EARLIEST-START Of the :CONSUMER.
:LATEST-END iS the :LATEST-FINISH Of the :RETURNING-TASK.

RACKS include the RESOURCE-POOL capability, which tracks
availability of the resource. Each RESOURCE-POOL includes the fol-
lowing information in an internal (i.e., "non slot") form:

:ALLOCATIONS A list of resource-utilizations
:AVAILABILITY A list of sublists, each of which indicates a

duration and the quantity of resources available during
that duration.

A constraint attached to the RESOURCE-UTILIZATION capabil-
ity requires that the :SUPPLIER have sufficient quantity of the
resource between :BEGIN and :END times. As planning progresses
this constraint, which uses the *RESERVE* predicate in its relation-
ship, is checked in bias-true mode. When satisfiable, a *RESERVE*
predicate evaluated in bias-true mode will have several side effects:

The new RACK-UTILIZATION is pushed On 10 the
pool's ALLOCATION list and the pool is put into the
RACK-UTILIZATION'S :SUPPLIER slot. Also, availability
of the pool is updated to reflect the new resource
utilization.

A failed reservation constraint means that the designated RACK
could not supply the quantity of resources (in this case, 1) requested
by the :CONSUMER because some other task@) reserved the
resource at an overlapping time interval. For example, changing a
mission's launch date will usually cause once-successful rack utiliza-
tions to suddenly have violated constraints involving *RESERVE*
predicates.

The user or an automated problem-solving strategy can focus
on one of these constraints, and ask CAMPS to suggest corrective
actions by evaluating the *RESERVE* predicate in the make-true
mode. The resulting delta-tuples typically include:

Reschedule the task's start or end time to the closest time
when the required resource becomes available for the
required duration. This would amount to sending a
:RESTRICT message to the generator attached to the
task's START or END variable in order to restrict its value
to a new acceptable range.

Change the resource requirement if the task's requirements
can be met by some other resource with similar
capabilities or by some other resource-pool.

Modlfy conflicting tasks by finding those reservations in the
resource pool whose rescheduling would enable the
task-at-hand's resource requirement to be met and
reschedule those reservations.

Reduce the quantity of resources requested by the task to the
number of resources available at the time. For resource-
pools of only one resource, (as is the case with experi-
ment racks) this is not an option and for those cases
CAMPS will not generate a delta-tuple that suggests
using zero of that resource.

A simple example dealing with rack resources is shown in

laps with the RACK-INTEGRATION task of STS-1003. In this particular
case, the same rack SN003-s is desired by both tasks. The rack-
resource-utilization associated with STS-1003 posts a constraint
violation that reflects its failure to reserve its desired resource.
Figure-6 shows the delta-tuples returned by re-evaluating that con-
straint in make-mode.

The belief/disbelief pairs shown embody several general con-
siderations. Each one of these tasks has an earliest and latest start
and earliest and latest finish that represent acceptable slack in the
schedule. For the delta-tuples dealing with changing start and end
times, the belief decreases and the disbelief increases as the
difference between the original and suggested time increases.(figure
5) For the delta-tuples that suggest using another resorlrce, 'le
belief is a function of the number of other resources in that pool
and/or the number of pools with the same rack capabilitys.

Only a glance at figure-6 shows that one delta-tuple seems the
most likely to succeed. The final step in the planning process is to
invoke the chosen delta-tuple by sending the message and
arguments off to the specified recipient.

figure-3. The RACK-DEINTEGRATION task Of mission STS-10022 over-

\CK-I 'EGRAII N

* [
Scllcd

I

Figure 3. A Gantt chart showing a very
small portion of a payload preparation
for two hypothetical space lab
missions. Rack integration -- putting
experiments into racks and racks into
the module -- is the consumer task of
racks, while rack deintegration readies
the rack for reuse.

31 1

Figure 4. Calculating a belief
and disbelief for a suggestion.
Given the number of pools
believed acceptable but not yet
considered (e.g., the number
of remaining candidates) and
the number of pools. calculate
the ratio. A low ratio indicates
that most potential candidates
have been rejected. Disbelief is
a constant, perhaps derived
from the type of the resource.
Normalization forces the belief
and disbelief to total less than 1
by multiplying each by
1 I(belief+disbelief) when their
sum exceeds 1.0.

i n I
. ; ... max-belief

I I : I
Constant disbelief rr=-i Disbelief

min-belief.

Ratio of acceptable pools unconsidered (assume: 1)
to pools at facility (assume: number of instances) >

Case 1: Resource is available before task's latest start

Case 2: Resource is first available after task's latest start Figure 5. Unnormalized belief

1.0
max-belief 1.

.

TIME >

and disbelief as a function of
the delayed start. Two arbitrary
constants are used: a constant

' * describing how much more
. disbelief increases as a

function of time after the start
is delayed beyond the currently
assumed "latest start: " and a
constant which, when
multiplied by the task's current

* duration, gives a tolerance.
Two cases are shown: (1)

. shows the resource becoming
available before the task's
latest start; (2) shows the
resource becoming available
after the task's latest start.

.

Plan
Element

Slots Message Recipient Confidence
Pair

(0.65 0.35) Overall-Rack- (:END) :DELTA-RE=RI~ Overall-Rack-
Deintgration-1002 Suggests to finish &integration earlier Deintgration-1002

Overall-Rack- (:START) :DELTA-REnRICT Overall-Rack- (0.35 0.45)
Integration-1003 Suggests to start integration later Integration-1003

(0.1 0.8) m - 1 0 0 2 (:START) :DELTA-RE!TIRICT STS-1002
Suggests to switch in mission sequence

Rack-Resource- (SUPPLIER) :DELTA-RE!TIRICT Rack-Resource- (0.1 0.8)
Uti'ization-1002 Utiliza tion-1002 suggests using a different rack

Figure 6. Given the constraint violation of figure 3, EMPRESS-II returned four delta-tuples as shown by this table. While we argue that
selecting the "best" delta-tuple should be mediated by higher-level problem-solving strategies, we can see that simply picking the
"most believed" suggestion is a good general heuristic.

312

Top-down oal-driven
problem-so B ving strategy

f
/

Yeeds

Bottom-up su gestion
from local anaysis ? of situation

8. Conclusion

Like many recent planning systems, CAMPS builds on a
hierarchically structured metaplanning component. This component
represents the planning system's "self-knowledge" and is used to
Control the application of primitive operators (CAMPS predicates)
towards plan realbation. In addition, make-mode constraint
evaluation imbues the CAMPS primitive operators themselves with a
degree of "self knowledge." When the planning process runs into
difficulties, a dialog commences between a globally-oriented
problemsolving strategy and the local constraint instances. The
dialog is initiated by a problem-solving strategy that examines the
violated constraints and selects one or more to evaluate in make-
mode. These constraint instances dutifully return a list of suggestions
embodied in the delta-tuples.

The returned delta-tuples are examined by the problem solving
strategy which can choose one or more to apply or seek some aler-
native means of plan repair altogether. The purpose of the delta-
tuples is to pose those simple alternatives that would typically cause
a minimum of plan disruption and reconstruction. They embody the
generally accepted heuristic of any intelligent problem solver:
"Consider the easy things first."

9. Biblioaram

[Brown851 Brown, Richard. Agendas: A Metaplanning
Mechanism. M-series M85-26, MITRE Corporation, Burlington Road,
Bedford MA 01730, July 1985.

Figure 7. Most planning systems view
constraint violations as 'problems."
CAMPS uses MAKE- mode evaluation
on constraints to suggest opportunities
for making a plan better. Note: the
effort of determining that a constraint is
violated is about 90% of the effort
needed to suggest the "obvious" ways
to correct the violation.

[Brown861 Brown, Richard, "A Solution to the Mission Planning
Problem" in Proceedings of the Second Aerospace ~ l k a t i o n s of
Artificial Intelligence, Dayton, Ohio, October 13-17, 1986.

[Davis801 Davis, Randall. Meta-rules: Reasoning about Control.
Arlificial Intelligenm, 15,1980.

[Fox831 Fox, Mark S. Constraint-Directed Search: A Case Study
of Job Shop Scheduling. PhD thesis, Camegie-Melon University,
1983.

[Sacerdoti77] Sacerdoti, E. D., A Structure for Plans and
Behavior, American Elesevier, New York, 1977.

[Stefiksla] Stefik Mark. Planning and Meta-Planning.
(MOLGEN: Part 2), Artificial Intelligence 16(2) 1981.

[Stefik81 b] Stefik Mark. Planning with Constraints. (MOLGEN:
Part l) , Artificial Intelligence 16(2) 1981.

[Wilensky80] Wilensky, Robert. Meta-Planning. First NCAl 334-
336, August 1980.

2 None of h s e mission numbera cornspond to ones actually planned. They Em

derived from a NASAlKSC planning exercise that determined whether there were
enough racks for missions through the year 2OOO.

3 There numbers are based on general considerations and mnot reflect situa-
lion specific knowldge h t might cleedy favor a suggesbd wme of action in
spite of ig kw belief. However m most cases these numben prwide a good md-
cation of the relative meria of ow suggestion over another. It is typically benor b
shih a subtlsk a litlle t h ~ reschdde its entire w e n t msk; md using another
rssoutw har a better chance of sucoeedin(l if many similar resources c I , 5e
1Mnd

313

